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Abstract. Due to advancements in technology, modern farms work differently than those 

from past. Over the years, there was an increase in the number of data collected by 

sensors, cameras and other systems. In this scenario, the implementation of data mining 

on parallel computing systems is crucial for ensuring system scalability and better 

performance as data continues to grow.  This paper presents a case study on a parallel 

implementation of the K-means clustering. Clustering has been used in many 

applications including image processing, information retrieval and climatology. 

However, k-means clustering is knowing to be computationally expensive when applied 

to obtain clusters from large datasets. The parallel k-means implementation is target to 

general purpose graphics processing units. In order to implement the k-means clustering 

to this parallel architecture and to provide a better software platform to data science 

research, the Weka k-means implementation were chosen and adapted. First, a profiler 

was used to identify the most time-consuming portions of code. By using a profiler, it was 

possible to verify a 95.57% reduction in the number of lines of code that would need to 

be analyzed to rewrite the code. After, a parallel k-means clustering was implemented 

and evaluated. The results show that using the parallel k-means clustering and graphics 

processing units, data mining results can be achieved in reduced times. The speedup 

achieved was up to 26 when using all available execution cores. 
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1. Introduction 

Modern farms work differently than those from past, primarily because of advancements in 

technology, including sensors, devices, machines and farming management systems. Today’s 

agriculture uses technologies such as temperature and moisture sensors, images from unmanned 

aerial vehicles and geographic information systems [1]. These devices and technologies allow 

farms to be more efficient, safer and more environmentally friendly. 

Over the years, there was an increase in the number of sensors in the field, resulting in an 

increase in the number of data collected [1]. To be able to work with this data flow, it is necessary 

to apply techniques known as Data Mining (DM). These techniques allow to extract patterns and 

relationships using machine learning algorithms. From the knowledge obtained with the DM, it is 

possible to predict behaviors and assist in decision making [1,2].  

Due to large data volume available used as input, the implementation of data mining 

techniques on parallel computing systems is crucial for ensuring system scalability as data 

continues to grow.  In this scenario, parallel computing has been a viable means to reduce data 

mining computing times. Among parallel architectures, General Purpose Graphics Processing 

Units (GPGPU) is an option to speed up data mining computing [2]. 

The number of cores in GPU hardware is massively greater than the number of processing 

cores in general purpose CPUs. GPUs are dedicated hardware for manipulating computer graphics. 

Due to the computing demand for 3D graphics modeling and rendering, GPUs have evolved into 
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an organization of highly parallel many-core processors [3]. The advances in GPU architectures 

have driven the development of general-purpose computing on GPUs (GPGPU). 

Although it is mistakenly considered a recent technology, GPU programming is used from 

the early 1990's. There are challenges in algorithm design when using GPU manycore 

environments as target hardware. First, it is necessary a deep knowledge of the algorithm (parallel 

or sequential) that will be written into a new version, target to GPU hardware manycore. Also, it 

is necessary that the algorithm that will be executed in manycore hardware must present a high 

level of parallelism, because despite the massive number of cores, GPU clock rates are usually 

below CPU clock rates [4].  

This paper presents a case study on an implementation of the k-means algorithm in a GPU 

computing environment. K-means clustering is a very popular unsupervised machine learning 

method. It has been used in many applications including image processing, information retrieval 

and climatology [5]. However, k-means clustering is knowing to be computationally expensive 

when applied to obtain clusters from large datasets.  

In order to implement the k-means clustering target to GPU systems and to provide a better 

software platform to data science research, the Weka k-means implementation in the Java language 

were used [6]. Weka is a free software licensed under the GNU General Public license and the 

parallel version was built using the original Weka k-means source code. By this way, the parallel 

k-means code can be easily experimented by accessing the Weka GUI.  

2. Related Work 

The first k-means algorithm [7] was proposed in 1967 and since it is used in data science and 

machine learning. In the k-means algorithm, we are given a finite set S of points in ℜm, and an 

integer k ≥ 1, and we want to find k points (centroids) so as to minimize the sum of the square of 

the distance of each point in S to its nearest center. This problem is well as NP-hard [8] and thus 

k-means is highly time-consuming when data and cluster sizes are elevated. 

Recently, as a general-purpose and high-performance parallel hardware, GPUs develop 

continuously and provide another computing system for improving k-Means performance. GPUs 

are dedicated hardware for manipulating into highly parallel many-core processors.  In [9], the 

first parallel k-means was presented. Since that, many attempts have been made to develop 

clustering algorithms to take advantage of the high-performance parallel computing systems [10]. 

Jaros et al. [11] presented a parallel k-means algorithm for image segmentation. The 

authors implemented an k-means target to Many Integrated Core (MIC) architecture composed of 

Intel Xeon Phi coprocessors. The authors evaluated the performance of MIC, GPU, CPU and 

sequential implementations. The authors related speedups values nearly to 12 and 33 in MIC and 

GPU, respectively, using different image and clusters sizes for clustering heart and liver images 

from human bodies. 

Lutz et al. [5] presented a GPU-optimized algorithm for k-means. The authors’ algorithm 

is based on a distinct strategy for updating centroids on GPUs. The reported k-means approach 

scales to very large data sets.  

Li et al. [12] proposed a framework for parallel k-means computation and deployed the k-

means algorithm on a many-core processor. The parallel efficiency achieved was almost equal to 

ideal using three randomly generated datasets. 

Li et al. [13] designed a parallel k-means algorithm for GPUs by using the Compute Unified 

Device Architecture (CUDA) programming model [14].  The authors concluded that the 

dimensionality (number of attributes) of the data set is an important factor to be considered. The 

authors employed distinct algorithms for low and high dimensional data sets. 
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3. Material and Methods 

The computing system used in the experiments is an Intel i5 7400 processor (4 cores and 4 threads 

clocked at 3.5 Ghz and at 4.0 Ghz when turbo boost is activated) with 8GB of 2.4 Ghz memory 

and equipped with a Nvidia GTX 1060 GPU (6GB of memory and 1280 cores). The CUDA 

software version used is 10.0.130.  

 

The k-means algorithm takes an input parameter k. It organizes a set of n data instances 

into k clusters according to a similarity measure. Each instance of data is considered a vector in 

Euclidean space and thus can have multiple attributes. The mean values of each cluster, also called 

centroids, are a summary measure of the similarity of the data instances associated to this cluster. 

At the beginning, the k-means algorithm randomly selects k of the data instances as the initial 

centroid for each cluster. In each iteration, k-means associates each data object with its nearest 

centroid, according to a similarity metric. The Euclidean Distance is a common choice to measure 

the similarity between data instances. Next, the k-means algorithm computes new centroids by 

taking the mean of all the data objects in each cluster respectively. The process repeats until the 

changes in the centroids values are less than some predefined threshold. In the experiments, the 

cluster size was fixed to k=10. 

 

The Weka k-means implementation in the Java language were used and extended to parallel 

version in the experiments. By this way, the parallel implementation can be easily experimented 

by accessing the Weka GUI.  Software profilers were used aiming to identify function call 

sequences and portions of code that are time consuming in Weka k-means implementation.  After, 

CUDA libraries were used to implement the parallel k-means computer program in the Java 

Language.  

The speedup values of the parallel k-means program were computed as defined by 

Equation 1: 

𝑆(𝑝) =  
𝑇 𝑠𝑒𝑞

𝑇 𝑝𝑎𝑟
  (1) 

where S(p) is the speedup using p cores, Tseq is the execution time of the sequential version 

and Tpar is the execution time of the k-means parallel version. Furthermore, the execution times 

were studied using the Amdhal’s law [15]. The Amdhal´s law gives the theoretical speedup in 

latency of the execution of a parallel program at a fixed data set that can be expected of a parallel 

execution system whose resources (processing cores) are improved. 

In the experiments, the k-means clustering sequential and parallel implementations use as 

input a database which describes the soybean productivity in agricultural areas of the USA [16]. 

This database is composed of 80 different attributes, 6 classes and 12800 instances.  Data 

augmentation techniques were used to increase the data set size and to better exploit the parallelism. 

4. Results 
 

Initially, the JProbe profiler was used to identify how much time is spent in each method of the 

Weka k-means algorithm. The results using a small portion of the data set can be seen in Table 1. 

As one can see, the major time-consuming portion in the Weka k-means implementation is the 

moveCentroids method. Due profiling, there was a reduction in the number of lines of code that 

must be analyzed. The k-means class has 2472 lines, while the moveCentroids method has 102 

lines. By this way, it was observed a 95.57% reduction in the number of lines to be manually 

analyzed by the programmer. 

 

Table 1 – Execution times in weka k-means main methods 
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Weka method Execution times Percentage (%) 

Weka.clusterers.SimpleKMeans.moveCentroid 00:11:30 50 

Weka.core.instance.weight 00:02:51 12 

Weka.core.instance.numAttributes 00:01:47 7 

Weka.core.instance.attributes 00:01:40 7 

Weka.core.instance.isMissing 00:01:29 6 

Weka.core.instance.value 00:01:28 6 

Weka.core.Attribute.isNumeric 00:00:49 4 

Weka.core.DistanceFunction.distance 00:00:38 2 

 

 

After identifying the most time-consuming method, a top-down analysis of this method 

was performed. The method implements two data structures and a repeat loop. The data structure 

used by the moveCentroids method is depicted in Figure 1. This data structure is a linked list of 

instances. One field of this data structure stores a linked list of attributes. In order to implement 

the parallel version of the code using the JIT java technology, five additional data structures were 

defined: a) a vector of Boolean values with size of N x M, where N is the number of instances and 

M is the number of attributes. This vector registers the presence of numeric values (not nominal 

attributes); b) a vector of Boolean values, which is set to True when the value is numeric; c) a 

vector with NxM size, used to store the attribute values; d) a value with the weight of each attribute; 

e) an auxiliary data structure used to store values updated by parallel threads and used in k-means 

clustering. 

 

 
 

Figure 1 – The moveCentroids data structure. 

The original Weka k-means implementation and the new parallel implementation were 

executed using the same data set and the results were compared. The Weka clustering report 

indicated that the two versions of k-means produced the same results (same number of clusters 

and same data distribution among clusters). The Table 2 show the computing times and the 

statistics using 1, 80, 160, 540 e 1080 threads. Each experiment was conducted 10 times for each 

number of threads. 

The study group with 1080 GPU cores achieved the best execution times and the lowest 

associate standard deviation value. This number of cores achieved shortest response times, which 

implies lower variance. Also, due to number of cores used, this group is less susceptible from other 

system or application processes influence when clustering data. 
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The Figure 2 shows a plot of the mean execution times divided by the mean number of 

computing threads. A reduction in response times was observed as the number of threads increased, 

thus characterizing a horizontal asymptote with a limit imposed by the execution time of the 

sequential portion of the code, as defined by Amdhal's Law.  The linear regression model, when 

using the number of threads by the execution times, explains nearly 71% of the experiment data 

(R² = 0,7135). 

 
Table 2 – Parallel k-means program execution times. 

Experiment/ 
#of threads 

1 80 160 540 1080 

1 03:46:15 00:23:42 00:16:14 00:12:05 00:08:46 

2 03:47:22 00:23:56 00:16:10 00:12:01 00:08:38 

3 03:47:18 00:24:05 00:16:05 00:11:43 00:08:41 

4 03:47:23 00:24:08 00:16:17 00:11:48 00:08:50 

5 03:46:25 00:23:45 00:16:37 00:11:43 00:08:41 

6 03:46:40 00:23:22 00:16:06 00:11:59 00:08:46 

7 03:46:25 00:23:31 00:16:37 00:12:09 00:08:43 

8 03:46:06 00:23:41 00:16:29 00:11:42 00:08:38 

9 03:45:54 00:23:49 00:16:12 00:12:10 00:08:44 

10 03:47:26 00:23:55 00:16:05 00:11:46 00:08:41 

Mean values 03:46:32 00:23:47 00:16:13 00:11:54 00:08:43 

Standard 
deviation 

0,59 0,24 0,20 0,18 0,06 

Speedup  9,52 13,96 19,03 26,00 

 

A logarithmic scale plot of the speedup values by number of threads are depicted in 

Figure 3. The speedup curve shows an asymptotic behavior. The regression model achieved a R² 

value nearly to 0,80. The speedup behavior allow to observe that better speedup values can be 

achieved when using more GPU cores.    

 

5. Conclusion 
This paper presents an implementation and a performance evaluation of a parallel k-means 

designed to GPU hardware. K-means is a common choice when data scientists aims to obtain new 

insights by exploiting machine learning data sets and, since GPUs have become faster, it is 

important to enable machine learning tools to exploit GPU parallel execution cores.  Our 

implementation works with the widely adopted Weka data mining tools. 

By using the profiler, it was possible to verify a 95.57% reduction in the number of lines 

of code that would need to be analyzed to rewrite the code for GPU hardware. Using the GPU 

hardware, data mining results can be achieved in short times. The use of the GPU hardware 

resulted in a speedup equal to 26 when using all available GPU cores.   
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Figure 2 – Mean execution times when using distinct number of threads and the linear 

regression model. 

 

Figure 3 – Speedup values 
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