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Abstract: Unmanned aerial vehicles are making farming more efficient, by allowing 

farmers to manage crops using georeferenced images. Images acquired from aerial 

vehicles cameras area used to build image mosaics of the crops. Image mosaicking is the 

alignment of multiple images into larger compositions which represent portions of a 3D 

scene. Several image mosaicking algorithms have been proposed over the last two 

decades. Among all, low-level feature detecting algorithms may be invariant to scale and 

rotation, among other transformations that commonly occur in agricultural images 

obtained by unmanned aerial vehicles. This study aimed to evaluate low level feature- 

based mosaicking methods using agricultural images obtained by unmanned aerial 

vehicles. The Harris corner detector, the FAST corner detector, the SIFT feature detector 

and the SURF detector were evaluated according to the computational performance and 

the quality of the generated mosaics. To assess computing performance, were considered 

factors such as the detected features average per image, the number of images used to 

compose the mosaic and the processing times. To assess quality, the mosaics generated 

by each method were used to estimate the Asian soybean rust severity and a comparison 

with the commercial software Pix4Dmapper was performed. Regarding quality, there was 

no significant difference and all methods proved to be on the same level. SURF detector 

used, on average, only 33.1% of the input images to compose the mosaics. The Harris 

corner detector achieved the best computing performance results. However, in its final 

mosaic, the usage of the input images was below than 50%. The FAST corner detector 

presented the best utilization of the input images, but significant discontinuities of objects 

where observed in the overlap regions of the resulting mosaics. Besides, the FAST 

presented the worst computing performance. The SIFT feature detector achieved the 

second-best processing time, the second-best utilization of the input images and built 

mosaics without discontinuities in overlapped regions. 
 

1 Introduction 

Unmanned aerial vehicles UAVs are making farming more efficient, by allowing 

the farmer to manage crop soil, to fertilize and to control crops diseases more effectively. 

When equipped with digital cameras, UAVs can collect georeferenced images of crop 

fields. These images can be used by farmers to make better decisions about farming 

practice. For instance, images acquired from UVA’s cameras are frequently used to build 

image mosaics which are used to support the farmer’s decisions [1]. 

Image mosaicking could be considered as a special case of scene reconstruction 

where the images are related only by planar homography [2][3]. An application scenario 

of UAVS in agriculture is to help farmers with crop diseases control. The quantification 

of damages is a key point in the definition of any disease control strategy [4]. Also, several 

companies also show interest and focus their efforts on this area through their commercial 

software packages. UAVs are less affected by cloud cover because they can fly at low 
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altitudes but have problems when capturing high-quality images due to the instability 

caused by their light weight. Since a single image can cover only a limited area, many 

images need to be captured, making the image mosaicking process much more difficult. 

The research community demonstrates real interest in image mosaicking area for both its 

scientific significance and potential derivatives in real world applications [5]. For 

instance, Figure 1 shows a mosaic image generated from 50 images collected from an 

UVA’s camera. 
 

Figure 1: Panoramic mosaic built using 50 from a soy crop located at Ponta Grossa city, 
Paraná, Brazil. 

 

The objective of this paper is to evaluate 4 classes of feature-based mosaicking 

methods using crop images obtained from an UAV camera as input. The evaluation was 

conducted comparing the computing performance and the quality of mosaics created by 

each method. Three metrics were adopted to assess performance: the average number of 

features and inliers detected in each image, the number of images used to create the 

mosaic and the processing time of each method. In order to conduct a qualitative 

evaluation, the mosaics built were used to estimate the Asian soybean (Glycine max) rust 

severity and the results were compared with the commercial software Pix4Dmapper1. 

 
2 Background 

Image mosaicking involves the following image processing steps: registration, 

reprojection, stitching, and blending [5]. These steps are illustrated in Figure 2. The 

registration step establishes a geometric match between a pair of images describing the 

same scene. To register a set of images, it is necessary to estimate the geometric 

transformations that align the images according to a reference image within that set. The 

set can consist of two or more images taken from a single scene at different times, from 

different viewpoints, and/or by different sensors. The reprojection refers to the alignment 

of images to a common coordinate system using geometric transformations. The goal of 

stitching step is to overlay the aligned images in a larger composition, combining pixel 

values of overlapping parts and retaining pixels where no overlap occurs. Errors 

propagated by these steps, due to geometric and photometric misalignments, often result 

in object discontinuities and seam visibility at the images boundaries. The final merging 

step tries to minimize this effect and homogenize the overall appearance of the mosaic. 
 

 

 

 

 

 

 
 

1 
is a photogrammetry software for aerial mapping applications [6]. 
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Figure 2: Computing steps when generating a mosaic (source: [5]). 

 
The first step, image registration, is considered the core of image mosaicking and 

it is done by feature extraction and matching algorithms. Among all, low level feature 

extraction algorithms are show some advantages over other methods, as speed, 

robustness, and the availability of creating panoramic image of a non-planar scene with 

unrestricted camera motion [7, 8]. 

Instead of using all the available data, feature based algorithms try to establish 

feature points correspondences from all images to be registered. Different features have 

been adopted, including region, line and point features. In order to obtain an image 

mosaic, the features are matched by utilizing a correlation measure in the local 

neighborhood. Low level feature-based algorithms perform image mosaicking even when 

images large overlapping areas are not available [5]. Low level feature algorithms are also 

frequently invariant to scaling and rotating, among other transformations. This type of 

transformations is common in images obtained by cameras. 

When camera equipped unmanned aerial vehicles fly over the crop, the images 

acquired are frequently overlapped and are subject to transformations, due all kind of 

motion in the camera during images acquisition. According to [5], the main low-level 

feature extraction algorithms are the following: Harris [9], FAST [10], SIFT [11] and 

SURF [12]. 

As the name suggests, the Harris corner detector detects corners in the images as 

robust low-level features. Initially, a small local detection window is projected into the 

image (Figure 3). In sequence, the intensity variation resulting from the displacement of 

this window for a short distance in any direction is determined by the (13): 

 

𝐸(𝑈, 𝑣) = ∑𝑖 𝑤(𝑥𝑖, 𝑦𝑖) [𝐼(𝑥𝑖 + 𝑈, 𝑦𝑖 + 𝑉) − 𝐼(𝑥𝑖, 𝑦𝑖)]2 (1) 
 

where 𝑤(𝑥𝑖, 𝑦𝑖) is the window function for the detection window, (𝑥𝑖, 𝑦𝑖), 𝐼(𝑥𝑖, 𝑦𝑖) is the 

image intensity value at the location of Pixel (𝑥𝑖, 𝑦𝑖), and 𝐼(𝑥𝑖 + 𝑈, 𝑦𝑖 + 𝑉) is the intensity 
with offset (u,v). 
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(a) (b) (c) 

 

Figure 3: local detection window of intensity variation. (a) No variation in all directions. (b) No 
variation in edge direction. (c) Meaningful variance in all directions (corner found). 

 

The local texture around the pixel (𝑥𝑖, 𝑦𝑖) is expressed as an autocorrelation 

matrix C, as follows: 
 

 
𝐼2 𝐼  𝐼 

𝐶 = ∑ 𝑤(𝑥 , 𝑦 ) [ 𝑥𝑖 𝑥𝑖 𝑦𝑖]
 (2) 

𝑖 𝑖 𝑖 𝐼𝑥𝑖 
𝐼𝑦𝑖

 
2 
𝑦𝑖 

where I
x 
and I

y 
are the first derivative of 𝐼(𝑥𝑖, 𝑦𝑖). Two large autovalues for the matrix C 

i i 

correspond to a corner point. In this case, the center point of the window is characterized 

as such. For greater robustness, a measure of cornerness2 R is used to eliminate edge 

points, as Equation (3): 

R=Det(C)−αTr2(C) (3) 

where Tr(C) is the dash of C and α is within the range 0.04 ⩽ α ⩽ 0.06. Corner points are 

detected as local maximums of R above a predefined T threshold. 

After the corner points are detected in both images, the matches are established 

by NCC or by another sum of squares method of the SSD differences. Subsequently, the 

geometric movement parameters are calculated and the images are deformed according 

to a global reference image in order to create the mosaic. Mosaic algorithms using the 

Harris corner detector are computationally simple and almost accurate [5]. 

Like the Harris corner detector, the FAST corner detector detects corners in the 

images. This algorithm is computationally more efficient and faster than most other low- 

level characteristic extraction methods. Consequently, the mosaic methods based on this 

algorithm are particularly suited for real-time image processing applications. 

Initially, a circle of 16 pixels is considered around each pixel candidate to corner. 

The candidate is considered a corner if there is a set of n contiguous pixels in the circle 

that are or all clearer than the pixel’s candidate intensity plus a threshold, or all darker 

than the candidate pixel intensity minus a threshold, as illustrated in Figure 4. 
 

 

 

 

 

 

 

2 
the purpose of this measure is to associate a score proportional to howstrongly a region of the image 

has a particular structure, such as a corner. 

𝐼 
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Figure 4: FAST algorithm candidate search. Source: [10] 

Choosing an optimal threshold is often a fundamental challenge of the algorithms 

based on the FAST corner detector. The number n is usually set to 12. In order to 

minimize FAST computing times, a CRF function is used. The CRF function provides 

the cornerness measure of a corner point based on the local neighborhood image 

intensities [13]. The corners are detected as local maximums for the calculated CRF 

function over the entire image. After detection, the corner point matching is performed 

for each pair of images. Then the homograph arrays are calculated and thus the images 

are projected into a common coordinate system to generate the mosaic. 

The SIFT detects distinct characteristics (key points) in images. The algorithm is 

invariant to the translation, rotation, and scaling transformations in the image domain and 

robust for moderated perspective transformations and lighting variations. The SIFT 

algorithm has five main steps: Scale space construction, detection of extremes in scale 

space, location of key points, assignment of orientation and definition of descriptors to 

key points [5]. 

Initially, a scale space is constructed from the repeated convolution of an image 

using a Gaussian filter, with changes in scale and grouping of outputs in octaves, 

according to Equation 4 [11]: 

L(x,y,σ)=G(x,y,σ)*I(x,y) (4) 

where * is the convolution operator, G(x,y,σ) is a Gaussian filter with variable scale σ and 

I(x,y) is the input image. After the construction of the scale space, the Gaussian difference 

images are computed from the adjacent Gaussian images in each octave, as follows 

(Equation 5): 
 

D(x,y,σ)=L(x,y,kσ)−L(x,y,σ) (5) 
 

Then, the candidate key points are identified as local extremes of the DoG images 

on three scales: the current, the immediately above, and the immediately below. In the 

next step, low-contrast and/or localized key points along edges are discarded using an 

accurate key-point location. Key points are then assigned to one or more orientations 

based on the local gradient directions of the image, as Equation θ(x,y) = 

tan−1((L(x,y+1)−L(x,y−1))/(L(x+1,y)−L(x−1,y))) (6): 

θ(x,y) = tan−1((L(x,y+1)−L(x,y−1))/(L(x+1,y)−L(x−1,y))) (6) 

where θ(x,y) represents the direction of the gradient to L(x,y,σ). A set of orientation 

histograms is formed over the neighbourhoods of each key point. Finally, a normalized 

vector of 128 dimensions is calculated for each key point as its descriptor [15]. 
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In order to find the corresponding initial key points from two images, the closest 

neighbor to a key point of the first image is identified from a database of key points of 

the second image [11,16]. After the initial match, the RANSAC [17] algorithm is used to 

remove the false matches and calculate the transformation parameters between a pair of 

images. Finally, the images are deformed using the transformation parameters and 

combined to generate the mosaic. Image mosaic algorithms based on the SIFT feature 

detector are considered when combining high-resolution images under a variety of 

changes (rotation, scaling). 

The SURF detector is an invariant feature detector at scale and rotation. Just like 

the SIFT feature detector, it is also based on scale space theory. However, the SURF 

detector uses the Hessian array of the entire image to estimate local maxima in different 

range spaces [18]. The Hessian array [12] of an image I with scale σ at any point (x,y) is 

defined as follows (Equation 7): 
 

𝐿𝑥𝑥(𝑥, 𝑦, 𝜎) 𝐿𝑥𝑦(𝑥, 𝑦, 𝜎) 
𝐻(𝑥, 𝑦, 𝜎) = ( 

𝑥𝑦 (𝑥, 𝑦, 𝜎) 𝐿𝑦𝑦 (𝑥, 𝑦, 𝜎)
) (7)

 

 

where 𝐿𝑥𝑥(𝑥, 𝑦, 𝜎), 𝐿𝑦𝑦(𝑥, 𝑦, 𝜎) and 𝐿𝑥𝑦(𝑥, 𝑦, 𝜎) are the convolutions of I at point 

(x,y) with second-order Gaussian filters 𝜕
2 

𝐺(𝑥, 𝑦, 𝜎), 𝜕
2 

𝐺(𝑥, 𝑦, 𝜎) and 
 

𝜕2 
 

 

𝜕𝑥𝜕𝑦 

 
𝐺(𝑥, 𝑦, 𝜎), respectively. 

𝜕𝑥2 𝜕𝑦2 

When calculating the Hessian matrix in each pixel, the operations of Gaussian 

filters are approximated by operations using box filters, as illustrated in Figure 5. The 

response in each pixel is calculated as the determinant of the Hessian matrix. Then a 

threshold and a maximum local detection window of 3×3×3 are used for non-maxima 

suppression. The local maxima are interpolated into the scale space to get the key points 

with their location and scale values. In order to assign guidance for each key point, Haar’s 

wavelet responses are computed within a circular neighborhood around each key point. A 

vector isformed by summing all the answers within a window of 60 degrees. The longest 

vector is assigned as orientation to the key point. In order to assign a vector descriptor to 

each key point, a square neighborhood region is defined around the key point. This region 

isdivided into smaller subregions. The sum of the responses of the wavelet of Haar from 

all sub-regions are used to generate a vector descriptor of 64 dimensions [19]. 
 
 

Figure 5: From left to right: approximation of second orderpartial Gaussian derivatives in 
directions x, y and xy. 

After you find the corresponding key points from a pair of images, the RANSAC 

algorithm is used to eliminate the false matches, as well as to calculate the homography 

arrays. Once the homography matrices are obtained, the images are deformed and 

combined to obtain the final mosaic. The continuous advent of new mosaicking 

𝐿 
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techniques in recent years makes it really difficult to choose an appropriate mosaicking 

algorithm for a specific purpose. Also, crop images introduces some difficult to create 

mosaics, because of the relative homogeneity of crops in the field. Due to this, it is very 

important to evaluate the quality of mosaicking algorithms and its computing 

performance when used to solve precision agriculture issues. 

 

3 Material and Methods 

The crop images were acquired from the UAV eBee camera, manufactured by 

senseFly (Figure 6). Before each UAV flight, 5 GCP measuring 60x60cm were 

positioned. The geographical coordinates of the central point were obtained using the 

GNSS receiver Trimble Juno SC. The flights were conducted at an altitude of 530 meters, 

between 11am and 2pm. They were performed weekly, on the day of the week that 

presented favorable climate conditions. 

The UAV used is equipped with a Sony Cyber-shot DSCWX220 camera with 18.2 

megapixels. The resolution of crop images is 15cm/pixel. From the flights, 3 groups of 

images were obtained. The photographed soybean crop is located at a farm named 

Fazenda Escola, in the city of Ponta Grossa – PR – Brazil. 
 
 

Figure 6: UAV used for capturing crop images. 

Four farm parcels (A3, A4, B3 and B4) were photographed. Each parcel was 

subdivided into 4 blocks with 11 crop treatments per block. Parcels A3 and B4 contained 

the 5969 Nidera cultivar with a population of 14 or 15 plants per meter. Parcels A4 and 

B3 contained the TMG 7262 cultivar with a population of 10 plants per meter. 

The computer program was implemented in C++ programming language. Features 

available in the OpenCV3 library (version 3.3.1) were used, following the main ideas from 

[20, 21]. The computing model steps is detailed in Figure 7. The whole process was 

organized into 3 main steps: Registration, Calibration and Compositing. 
 

 

 

 

 

 

 

 

 

 

 

 
3 https://opencv.org 
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Figure 7: Computer program main steps. 

The OpenCV library defines the stitching module and the detail submodule, which 

contains a set of functions and classes that implement a stitcher4. However, the resources 

available for conduction the registration step in the stitching are not compatible with the 

purpose of this study, because the Harris corner detector, the FAST corner detector and 

the SIFT feature detector were not available within this module. Thus, the Registration 

step was completely reimplemented and the remaining mosaicking steps could be 

following by using the overall stitching module functions. 

The Registration step initially resizes the input images to a medium size, detects 

and describes the features in each one of them. The Harris corner detector and FAST 

corner detector do not use descriptors, but detectors. The BRISK [22] descriptor was used. 

The default openCV detector and descriptor parameters were used. For every feature, the 

2 best candidate matches (nearest neighbors) are kept and the ratio test is applied in both 

directions (for instance, from imageA to imageB and from imageB to imageA). 

A ratio test rejects all matches in which the distance ratio between the nearest 

neighbors is greater than 0.8, which eliminates 90% of the false matches (outliers) while 

discarding less than 5% of the correct matches (inliers) [11]. Also, in the Registration 

step, a symmetry test is performed, keeping only features of the imageA and imageB that 

match to each other simultaneously. Then, the homography between the pair of images is 

computed using the RANSAC [17] algorithm. 

Right after, a refinement is performed and the homography is computed again, but 

this time only with the obtained inliers. In the sequence, the probabilistic model for image 

matching verification proposed by [20] is computed. With this model, one can ensure if 

the matching of the pair of images is valid or not. The maximum number of pairs per 

image satisfying the probabilistic model was limited to 6, as suggested by [20]. 

The Calibration step focuses on minimizing differences between an ideal model 

and the camera-lens system: different camera positions and optical defects such as 

distortions, exposure, chromatic aberrations, and so on [21]. The parameters are refined 

globally using bundle adjustment [23], which is a photometric technique to combine 

multiple images of the same scene into an accurate 3D reconstruction. The aim is to find 

a globally consistent set of alignment parameters that minimize the mis-registration 

among all pairs of images [7]. In the sequence, optionally, wave correlation can be 
 

4 It can be understood as a program that creates mosaics from two or more images 
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calculated to improve the camera setting. It was not necessary to calculate it for the 

mosaics created from the groups of images used in this study. Also, in the Calibration 

step, since mosaicking could be regarded as a special case of scene reconstruction where 

the images are related only by planar homography [2], a planar map projection is used, 

and each image is warped. Then, the exposure errors are compensated on each warped 

image. 

Finally, the best areas of attachment for each image (seam masks) are found. The 

Compositing step uses the results of the previous step, Calibration, combined with the 

remapping of the images to an output projection. Colors are also adjusted between images 

to compensate for exposure differences. Images are blended together, and seam-line 

adjustment is done to minimize the visibility of seams between images [21]. First, each 

input image is read and, if necessary, resized. Then, these images are warped and 

compensated for exposure errors. Finally, these images are multiband blended. 

The scale of [24] (Figure 8) was used to quantify the rust severity on field. 7 

randomly chosen plants in the center of each parcel were analyzed in 3 parts: top, middle 

and bottom. The final value of the severity was calculated from the average values of the 

3 parts and the 7 plants. 
 
 

Figure 8: Diagrammatic scale of soybean (Glycine max) rust severity (percentage of diseased 
leaf area). 

An Intel Core i7-2600 CPU 3.40GHz, 24GB RAM and executing Ubuntu 16.04 

operating system was used in the experiments. To conduct the computing performance, 

execution times were recorded. In this context, the execution time describes the interval 

between the moment when the program is started and the moment when the final mosaic 

is written to file system. Partial computing times were also recorded. Regarding the 

Registration step, for better comparing processing times among the methods, the 

evaluation was organized in two substeps. The first substep (Detect/Describe) describe 

the execution time it took to detect and describe the features of all images. The second 

substep (Match) describe the computing time it took to match and filter the features and 

to form the pairs of images. 

The performance evaluation was conducted considering the number of images 

used to compose the mosaic, the average of features detected in each image, the average 

of inliers detected in each image, the partial processing times in seconds (s) (Registration, 

Calibration and Compositing steps) and the total processing time for each method. 

 
3.1. Data extraction from mosaics 

With the mosaics created by the implemented program, the software Quantum 

GIS (version 2.8.13) was used to correct the georeferencing of each one based on the 

coordinates of the GCP. The software was also used to extract data from mosaics, as 

shown in Figure 9. The white circles represent the five GCP. The yellow lines represent 

the divisions of the blocks within each parcel. The light green rectangles delimit the 

region for data extraction in each treatment. In each region 200 random points were 
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defined, representing approximately 10% of its total area. These points were used to 

extract the values for RGB bands. The same process was repeated for the mosaics created 

by the software Pix4Dmapper (version 3.1.23). 
 
 

Figure 9: Mosaic and labels used for georeferenced information extracting. 

 

 

3.2. Data mining 

The extracted data were organized in two data bases. The first base contains values 

referring to parcels A3 and A4 and the second base contains values referring to parcels 

B3 and B4. The data bases were submitted to statistical tests in software R5 (version 

3.3.3). In each base, in order to estimate the rust severity indices, a regression analysis 

was performed using the SVR algorithm [25] present in e1071 package. The cross- 

validation method was used to validate the regression models. 

The test set was organized in 10 folds and the prediction was applied in each one 

separately. Finally, to conduct the performance evaluation of the mosaicking methods and 

the implemented program varying the number of input images, a new group of crop 

images was used. This group (B) was composed of 50 images that were obtained in an 

area with a more homogeneous appearance. Although the farm’s region was different, the 

obtaining conditions were the same as those previously described (the same UAV, flight 

altitude, time, camera, resolution and average overlapping area). 

 
4. Results and Discussion 

Figure 10, Figure 11 and Figure 12 show the mosaics created by each method from 

groups of crop images. Tables Table 1, Table 2 and Table 3 present the performance data 

obtained by each method from these mosaics. It was observed that: a) the average number 

of detected features directly affected the processing time of the Registration step; b) the 

number of images used to compose the mosaic directly affected the processing time of 

the Compositing step and; c) the average number of detected inliers and the number of 

images used to compose the mosaic affects the Calibration step processing times. The 

SURF detector was the only one that did not use all available images to compose the 

mosaic (Tables Table 1 and Table 2). It is due to the probabilistic model: the condition 

imposed by the probabilistic model for image match verification phase was not satisfied 

for some pairs of images. Due to this behavior, the processing times of the Calibration 

and Compositing steps were the lowest among all methods and, consequently, also the 
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lowest total times. However, this apparent performance improvement was not observed 

in the Registration step. This was due to the elevated average number of features and 

inliers detected by SURF detector, only smaller than the FAST corner detector. 

For the other methods (Tables Table 1, Table 2 and Table 3), one can observe that 

FAST corner detector had a considerably higher processing time for the Calibration step 

and Match substep. In the Calibration step, this happened due to the number of detected 

inliers. For the Match substep, this is explained by the average of detected features, which 

was near to 13.7 times higher when compared with the lowest average number of features 

in Tables Table 1, Table 2 and Table 3. However, the processing time for the 

Detect/describe substep was only 1.6 times above the faster average time from Tables 

Table 1, Table 2 and Table 3. 

FAST corner detector was able to detect features faster than the others, which 

corroborates with the results obtained by [7], who compared the processing times among 

several image feature extraction techniques with focus on real time image mosaicking. 

FAST corner detector was the fastest, immediately followed by Harris corner detector. 

SURF detector used all images to compose the mosaic, resulting in the vanishing 

of the advantage in the processing times presented in Tables Table 1 and Table 2 (Table 

Table 3). The total execution time was even higher than SIFT feature detector. However, 

this happened due to the number of detected features and inliers. In [26], the authors 

compared different image matching techniques against different kinds of transformations 

and deformations, with a similar number of features detected per image. SURF detector 

was almost 3 times as fast compared to SIFT feature detector. 

 

Table 1: Performance data from the group of images obtained on 02/15/2017. 
 

  SIFT SURF FAST Harris 

Average features  3,083 5,471 25,262 1,651 

Average inliers  265 207 666 73 

2*Registration Detect/describe 2.74s 2.34s 3.39s 2.10s 
 Match 3.29s 5.69s 67.05s 0.36s 

Calibration  4.08s 0.44s 16.01s 3.79s 

Compositing  8.67s 4.11s 7.19s 9.26s 
Total time  21.05s 14.08s 95.38s 17.90s 

 

 
Table 2: Performance data from the group of images obtained on 02/21/2017. 

 

  SIFT SURF FAST Harris 

Number of images  6 2 6 6 

Average features  3,236 6,204 28,780 3,087 

Average inliers  393 364 1,043 158 

2*Registration Detect/describe 3.68s 3.32s 4.59s 2.87s 
 Match 5.56s 11.56s 139.14s 1.68s 

Calibration  7.99s 0.13s 25.12s 12.88s 

Compositing  8.87s 2.44s 8.84s 8.63s 

Total time  27.93s 18.65s 179.45s 27.76s 
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Table 3: Performance data from the group of images obtained on 03/13/2017. 
 

  SIFT SURF FAST Harris 

Number of images  6 6 6 5 

Average features  2,570 4,987 23,363 915 

Average inliers  357 598 1,487 56 

2*Registration Detect/describe 3.23s 2.74s 3.79s 2.35s 
 Match 3.57s 8.11s 94.65s 0.22s 

Calibration  19.86s 18.59s 52.85s 5.20s 

Compositing  7.32s 7.34s 7.43s 8.43s 

Total time  35.69s 38.52s 160.50s 18.56s 

 

4.1. Rust severity results 

 
Tables Table 4 and Table 5 show the rust severity data obtained by each method 

from the mosaics created with the crop of images. The Correlation Coefficient (R) and 

the RMSE are presented, according to the date information from crop images. One can 

observe from the data of 02/15/2017 (Table 5) that the calculated R for SURF detector 

was reasonably lower than the others. This happened, specifically in this case, due to the 

low level of detail (low resolution) of the generated mosaic, especially in the region of 

the parcels B3 and B4. The level of detail is associated with the spatial resolution, which 

can directly affect the results obtained from the data extracted from the image. 

In [27], the authors conducted a study comparing the impact of spatial resolution 

of images on the detection of HLB disease, which attacks citrus plants. Resolutions      of 

50cm/pixel and 5.45cm/pixel were compared. The authors found that the data set based on 

the higher resolution images produced a better accuracy in the classification (67-85%) and 

less false negatives (7-32%) than the corresponding data set based on the images with 

lower resolution (61-74% and 28-45%, respectively). 

Despite the low R calculated for SURF detector in Table 5, a single-factor 

ANOVA with significance level of 95% was performed with both R values and RMSE 

values. The ANOVA test shows there is no significant difference in the means. This 

indicates that the final quality of the mosaics generated by the evaluated methods and by 

the software Pix4Dmapper was on the same level. 
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Figure 10: Mosaics created from the group of images obtained on 02/15/2017. 
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Figure 11: Mosaics created from the group of images obtained on 02/21/2017. 
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Figure 12: Mosaics created from the group of images obtained on 03/13/2017. 
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Table 4: Asian soybean rust severity data from parcels A3 and A4. 
 

02/15/2017 02/21/2017 
 R RMSE R RMSE 

SIFT 0.83 6.10 0.84 5.89 

SURF 0.86 5.56 0.86 5.54 

FAST 0.83 6.09 0.85 5.76 

Harris 0.83 5.98 0.85 5.67 

Pix4Dmapper 0.85 5.71 0.88 5.17 

 

 
Table 5: Asian soybean rust severity data from parcels B3 and B4. 

 

02/15/2017 02/21/2017 03/13/2017 
 R RMSE R RMSE R RMSE 

SIFT 0.80 4.03 0.78 4.94 0.75 11.68 

SURF 0.69 4.59 0.80 4.83 0.76 11.46 

FAST 0.80 3.90 0.79 4.86 0.80 10.65 

Harris 0.81 3.91 0.77 5.11 0.77 11.35 

Pix4Dmapper 0.82 3.74 0.81 4.69 0.79 10.80 

 

4.2. Performance results 

Figure 13 shows the mosaics created by each method using the 50 images per 

mosaic and the Figure 1 show the mosaic created using the Pix4Dmapper software. Table 

6 present the performance data obtained by each method. 

It is possible to observe that none of the methods used the total number of images 

to compose the mosaic. FAST corner detector obtained the best use with 48 images. In 

spite of this, the alignment of the images in the final mosaic was not ideal, causing 

discontinuities of objects. SIFT feature detector obtained the second best use with 41 

images. Harris corner detector used 26 images and SURF detector achieved the worst use, 

with only 3 images. 

Besides the fact that the area used had a more homogeneous appearance, which 

could make it difficult to match features and, consequently, to form pairs of images. This 

can be explained due to the poor performance that SURF detector has under certain 

transformations (e.g. color, illumination), which is common in crop images obtained by 

UAV; and Harris corner detector is good only for moderate changes in scale and rotation, 

situations that are easily overcome, especially in images obtained by UAV. 

On the other hand, at least related to crop images obtained by UAV, these results, 

coupled with the poor results obtained by SURF detector in Tables Table 1 and Table 2, 

go against what is stated by [5]. The average overlapping area was around 90% and the 

methods were not always able to use all crop images to compose mosaics. 
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Table 6: Performance data from the group composed of 50 images. 
 

  SIFT SURF FAST Harris 

Number of images  41 3 48 26 

Average features  4,55 6,19 32,021 6,401 

Average inliers  56 53 177 37 

2*Registration Detect/describe 26.63s 24.30s 34.07s 18.40s 
 Match 806.24s 867.51s 10,599s 563.88s 

Calibration  1,559s 0.36s 8,494s 353.79s 

Compositing  46.96s 3.13s 60.58s 15.64s 

Total time  2,44s 896.56s 19,19s 953.09s 

 

 
5. Conclusion 

This study presented a comparative evaluation of 4 low level feature-based image 

mosaicking techniques. Images acquired from UAVs cameras were used and the 

evaluation was made according to the computational performance and the quality of 

image mosaics. In order to evaluate performance, the average number of features and 

inliers detected per image, the number of images used to compose the mosaic and the 

processing time were taken into account. To evaluate quality, the mosaics generated by 

each method were used to estimate the Asian soybean (Glycine max) rust severity and a 

comparison with the commercial software Pix4Dmapper was performed. 

The comparison made between the estimates of the Asian soybean rust severity 

calculated by the software Pix4Dmapper and the other methods demonstrated that the 

quality of the generated mosaics was at the same level. The ANOVA methodology was 

used was applied at a confidence value of 95%. There is not difference among group 

values (rusty severity values) and the results did not show significant differences. 

The SURF detector obtained the worst performance among all methods and was 

not able to match most pairs of images in 3 of the 4 groups of images tested. In these 

cases, an average of only 33.1% of the input images was used to compose the final mosaic. 

Thus, presented itself as an inadequate solution for agricultural images obtained by UAV. 

Harris corner detector proved to be the fastest solution among all methods and 

could be reliable for small groups of agricultural images from regions with a more 

heterogeneous appearance. It was 7.27% faster to compose the final mosaic in cases 

where all images were used (Tables Table 1 and Table 2). However, in its final mosaic, 

the use of the input images was poor, being below 50%. 

The FAST corner detector, due to the high average number of detected features 

and inliers, obtained a better use of the number of images in the composition of the final 

mosaic. However, its processing time was considerably higher, becoming 6.42 times 

slower than the slowest solution among other methods in cases where all images were 

used to compose the mosaic (Table 2). In addition, significant discontinuities of objects 

occurred in its final mosaic. Thus, presented itself as an inadequate solution for 

agricultural images of regions with a more homogeneous appearance. 

The SIFT feature detector presented itself as the most suitable method. It obtained 

the second best processing time and the second best use of the input images to compose 

the mosaics, using 82% of them in the worst case (Table 6). In addition, there were no 

problems with object discontinuities. The SIFT feature detector is efficient for high 

resolution images and offers invariance to several transformations. Therefore, it proved 

to be a reliable solution for agricultural images obtained by UAVs. 



Iberoamerican Journal of Applied Computing                                                ISSN 2237-4523 

V.10, N.1, July/2020                                                                                                                                  Page 18 

Acknowledgements 

This paper is based upon work supported by CAPES. Any opinions, findings, 

conclusions or recommendations expressed in this material are those of the authors and 

do not necessarily reflect the views of the CAPES. We would like to thank the 

INFOAGRO laboratory staff for providing the UAV images used in this study and for 

their assistance during the process of estimating the Asian soybean rust severity. Thanks 

to UEPG and to High Performance Computing Lab (LCAD/UEPG) for providing the 

computing infrastructure used in the experiments of this research work. 

 
References 

 
[1] LI, Z.; ISLER, V. (2016). Large scale image mosaic construction for agricultural 

applications. IEEE Robotics and Automation Letters, 1(1) , pages 295–302. 

[2] GHOSH, D. et al. (2012) Quantitative evaluation of image mosaicing in multiple scene 

categories. IEEE International Conference on Electro/Information Technology, pages 

1-6. 

[3] ELIBOL, A. et al. (2017). Fast underwater image mosaicing through submapping. 

Journal of Intelligent and Robotic Systems, 85(1), pages 167–187. 

[4] HIKISHIMA, M. et al. (2010). Quantificação de danos e relações entre severidade, 

medidas de refletância e produtividade no patossistema ferrugem asiática da soja. 

Tropical Plant Pathology, 35, pages 96–103. 

[5] GHOSH, D.; KAABOUCH, N. (2016). A survey on image mosaicing techniques. 

Journal of Visual Communication and Image Representation, v. 34, p. 1–11, 2016. 

ISSN 1047-3203. 

[6] KAKAES, K. et al. (2015). Drones and aerial observation: New technologies for 

property rights, human rights, and global development. New America, 2015. 

[7] ADEL, E.; ELMOGY, M.; ELBAKRY, H. (2014). Real time image mosaicing system 

based on feature extraction techniques. 9th International Conference on Computer 

Engineering Systems, pages 339–345. 

[8] LI, A. et al. (2017). An improved FAST+SURF fast matching algorithm. Procedia 

Computer Science, v. 107, p. 306 – 312. Advances in Information and Communication 

Technology: Proceedings of 7th International Congress of Information and 

Communication Technology. 

[9] HARRIS, C.; STEPHENS, M. A. (1988). Combined corner and edge detector. In: 

Fourth Alvey Vision Conference, pages 147-151, Manchester, UK. 

[10] ROSTEN, E., DRUMMOND, T. (2006) Machine Learning for High-Speed Corner 

Detection. In: Leonardis A., Bischof H., Pinz A. (eds) Computer Vision – ECCV 2006. 

ECCV 2006. Lecture Notes in Computer Science, vol 3951. Springer, Berlin, 

Heidelberg 

[11] LOWE, D. G. (2004). Distinctive image features from scale-invariant keypoints. 

International Journal of Computer Vision, 60(2), pages 91–110. 



Iberoamerican Journal of Applied Computing                                                ISSN 2237-4523 

V.10, N.1, July/2020                                                                                                                                  Page 19 

[12] BAY, H.; TUYTELAARS, T.; GOOL, L. V. (2006). SURF: Speeded up robust 

features. 9th European Conference on Computer Vision, pages 404–417. 

[13] JOSHI, H.; SINHA, M. K. (2013). A survey on image mosaicing techniques. 

International Journal of Advanced Research in Computer Engineering & Technology 

(IJARCET), 2(2), pages 365–9. 

[14] GAO, G.; JIA, K. A (2007). New image mosaics algorithm based on feature points 

matching. Second International Conference on Innovative Computing, Information 

and Control, pages 471. 

[15] GHOSH, D.; KAABOUCH, N.; FEVIG, R. A. (2014). Robust spatial-domain based 

super-resolution mosaicing of cubesat video frames: Algorithm and evaluation. 

Computer and Information Science, 7(2). 

[16] LIQIAN, D.; YUEHUI, J. (2010). Moon landform images fusion and mosaic based on 

sift method. International Conference on Computer and Information Application, 

pages 29–32. 

[17] FISCHLER, M. A.; BOLLES, R. C. (1981). Random sample consensus: A paradigm 

for model fitting with applications to image analysis and automated cartography. ACM 

communications, 24(6), pages 381–395. 

[18] YANG, L. et al. (2011). A research of feature-based image mosaic algorithm. 

International Congress on Image and Signal Processing, pages 846–849. 

[19] BIND, V. S. (2013). Robust Techniques for Feature-based Image Mosaicing. Phd 

thesis, National Institute of Technology Rourkela. 

[20] BROWN, M.; LOWE, D. G. (2007). Automatic panoramic image stitching using 

invariant features. International Journal of Computer Vision, 74(1), pages 59–73. 

[21] GARCIA, G. B. et al. (2015). Learning Image Processing with OpenCV. Packt 

Publishing Ltd, 2015. 

[22] LEUTENEGGER, S.; CHLI, M.; SIEGWART, R. Y. (2011). Brisk: Binary robust 

invariant scalable keypoints. International Conference on Computer Vision, pages 

2548–55. 

[23] TRIGGS, B. et al. (1999). Bundle adjustment—a modern synthesis. International 

workshop on vision algorithms, pages 298–372. 

[24] GODOY, C. A. V.; KOGA, L. J.; CANTERI, M. G. (2006). Diagrammatic scale for 

assessment of soybean rust severity. Fitopatologia Brasileira, 31, pages 63–68. 

[25] VAPNIK, V.; GOLOWICH, S. E.; SMOLA, A. J. (1997). Support vector method for 

function approximation, regression estimation and signal processing. Advances in 

Neural Information Processing Systems., pages 281–287. 

[26] KARAMI, E.; PRASAD, S.; SHEHATA, M. Image matching using SIFT, SURF, 

BRIEF and ORB: Performance comparison for distorted images. Proceedings of 

Newfoundland Electrical and Computer Engineering Conference, St. John’s, Canada, 

2015. 



Iberoamerican Journal of Applied Computing                                                ISSN 2237-4523 

V.10, N.1, July/2020                                                                                                                                  Page 20 

[27] GARCIA-RUIZ, F. et al. Comparison of two aerial imaging platforms for 

identification of huanglongbinginfected citrus trees. Computers and Electronics in 

Agriculture, v. 91, p. 106–115, 2013. ISSN 0168-1699. 
 

 
 

  

(a) SIFT 

 

(c) FAST 

(b) SURF 
 
 

(d) Harris 

 

Figure 13: Mosaics created from the group composed of 50 images. 
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