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Abstract. This article presentes an overview of the digital root, demonstrating its 

functions, methods and applications. This article also presentes a study about the 
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For this, an algorithm for generation of random sequence of numbers is proposed, 

whose results as to its usability, using a battery of tests, are presented in this 
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1. Introduction 

In the digital world, the use of mathematical methods and formulas is a common 

practice for solving problems related to the speed or performance of computer programs 

as well as other purposes. In this sense, digital root presents a mathematical formulation 

not yet applied to the present moment. That said, this work presents a study on digital 

root, its functionalities and applications, as well as the development of an application 

for the generation of random sequences. 

Digital root, also known as seed number, is a value obtained from a non-negative 

integer by adding the digits of that number repeatedly until a single digit is obtained. 

Although digital root has few applications studies currently, its base, digital sum, which 

is the simple sum of the digits of a number, is used in algorithms for checking messages 

in Internet protocols (IP) (BARR, 1999). 

The study on the use of digital root in the area of random number generation is justified 

because the basic property of digital root favors the creation of simple numbers (from a 

single digit) from complex numbers, further modifying these sequences of numbers . 

While there are very good random number generators, such as SIMD-oriented Fast 

Mersenne Twister (SFMT), Permuted Congruential Generator (PCG) and Xorshift, 

there are other bad generators, such as RANDU and Fibonacci sequence, that when 

passed by batterie tests to determine their usability, get negative results most of the 

time. Thus, it is justified to use digital root in these latter algorithms, to make them 

viable and usable to generate random numbers. 

Therefore, this work has the general objective to present what is digital root, its 

characteristics, properties and applications. More specifically, an algorithm is presented 

using digital root and also its evaluation in the creation of a random sequence of digits, 

from the application of a set of tests. In addition, the algorithm developed is also tested 

on bad generators to compare with the results of the original generator. 

2. Theoretical review 
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This section presents the main concepts about digital root and random numbers, as well 

as related work on the subject, including digital root applications. 

2.1. Digital Root 

Digital root, according to Averbach and Chain (2000), is defined as "one-digit number 

obtained by summing all digits of the original number to obtain a new number, then 

adding all the digits of the new number to obtain a third number, and so on until it 

results in a one-digit number". 

To illustrate, digital root of a number n, which is the concatenation of m digits that it 

contains, will be the sum of those m digits that are concatenated, as long as the result 

has a single digit. For n equal to 318, with m equal to 3, we have 3+1+8 resulting in 12, 

which is not yet the digital root of 318. Thus, considering the previous result, 12, a new 

n, for which repeats the process. Therefore, 1+2 equals 3, this being the digital root of 

318 and consequently of 12 and itself (3). 

Thus, it is possible to verify that the numbers resulting from digital root are in an 

infinite rotation, that is, if n is a number between 1 and 9, then n+1 will be the next 

count, where n is equal to 9, n+1 will have the value of 1, restarting the rotation. 

Among some applications, it is possible to use digital root as a real proof of a value. So, 

for example, digital root is used to know if 2758+1475, whose result is 4233, is correct. 

Thus, if dr (2758) = 4 and dr (1475) = 8, dr (4+8) = 3, and if dr (4233) = 3, the result is 

correct (MENTAL MATH: DIGITAL ..., 2008). 

Aprajita and Kumar (2015, p. 19) have developed a study on digital root where they 

bring their concept, fundamentals and possible applications. As a proposition, they 

define the following. 

 
If N be the set of natural numbers and D = {1,2,3,4,5,6,7,8,9}, then the 

function dr: N → D is well defined. 

Proof: let a,b∈N and a = b, then obviously digits of a and b are the same. 

Therefore, sum of the digits of "a"= sum of the digits of "b", and sum of 

digits of "a" till a single digit is obtained = sum of digits of "b" till a single 

digit is obtained, that is dr(a) = dr(b). Therefore, dr:N→D is well defined. 

 

Based on this, the authors formulated some results as digital root partition the set of 

non-negative integers. (APRAJITA; KUMAR, 2015, p. 19) 

 
Let the relation is defined as 𝑎𝑅𝑏 ↔ 𝑎~𝑏,e sabendo que a~b ↔ (dr(a)= 

dr(b))tem-se que: 

• R is reflexive: dr(a) = dr(b) ↔  𝑎~𝑏 → 𝑎𝑅𝑏; 

• R is symmetric: 𝑎𝑅𝑏→dr(a) = dr(b) →dr(b) = dr(a)→ 𝑏~𝑎 → 𝑏𝑅𝑎; 

• R is transitive: 𝑎𝑅𝑏 e 𝑏𝑅𝑐→dr(a) = dr(b) e dr(b) = dr(c) →dr(a) = 

dr(b) = dr(c) →dr(a) = dr(c) →𝑎~𝑐 → 𝑎𝑅𝑐 

Therefore it is a equivalence relation and it partition the set of non-negative 

integers. 

 

Izmirli (2014, p. 301) has published an article in which he defines some properties of 

the digital root and consequently it demonstrates an application using the digital root, 

detailed below. 
Suppose we have a five-digit number. We are given that this number is 

divisible by 72. Starting with the first one, how many digits of this number 

must be disclosed before we can uniquely determine it? 
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Assume we are given the first digit, say 4. Obviously, more information will 

be needed before a unique solution  is found. For exemple, 46,800 = 650 x 

72, 48,600 = 675 x 72, ... all fit the bill. So, assume now the second digit is 

also given, say 8. Again, we can not find a unique solution based on this 

information: 48,321=671 x 72, 48,600 = 675 x 72, ..., are all possible 

solutions. So, assume one more digit is given, say 9. We claim this would be 

enough to solve the problem. 

If a number is divisible by 72, it must be divisible by both 8 and 9. But a 

number is divisible by 8 only if one of the two conditions holds: The 

hundreds digit is even and the last two digits are a multiple of 8 or the 

hundreds digit is odd and the last two digits are a multiple of 4 but not 8. 

Since in our example the hundreds digit is odd, the last two digits of the 

number we are looking for must be a multiple of 4 but not 8, that is, the last 

two digits must be one of 04 12 20 28 36 44 52 60 68 76 84 92. On the other 

hand, to be divisible by 9, the digital root of the number must be 9. So the 

answer will be 48,960, since dr (48,960) = 9 and 680 x 72 = 48,960. 

 

2.2. Random Number Sequences 

According to Casquilho (2007), "algorithms of the genre [random number generation] 

that can be implemented in a computer program are, by definition, completely 

deterministic and can never, therefore, produce a random effect of any kind". In this 

sense, the algorithms used to generate numbers never generate really random numbers, 

but pseudorandom numbers, which "simulate" the behavior of random numbers. There 

are already in the market equipment that, through physical phenomena, seek to generate 

"more random" numbers. However, these equipments are still expensive (COMO OS..., 

2010). 

Thus, knowing that computers generate pseudorandom numbers, it is necessary to 

understand theoretically what this means. In this regard, Katz and Lindell (2008) state: 

"A pseudo-random chain is a chain that looks like a uniformly distributed chain, as long 

as the "observing" entity executes it in polynomial time. Just as indistinguishability can 

be visualized as a computational loosening of perfect stealth, pseudorandomness is the 

computational loosening of true randomness". 

Pseudo-randomness refers to the distribution in strings, so a distribution D over a chain 

of length L is pseudorandom if D is indistinguishable from the uniform distribution over 

the strings of length L. Thus, it is impracticable for any polynomial time algorithm to 

determine whether it is given a chain that is in accordance with the D distribution or if a 

randomly chosen L chain is given. 

Thus, a pseudorandom generator is a deterministic algorithm that receives a small initial 

and really random value, called seed, and extends it into a long chain that is 

pseudorandom. Otherwise, a pseudorandom generator uses a small amount of real 

randomness to generate a large amount of pseudorandomness. Thus, with n being the 

seed length which is the input of the generator and L (n) the output length. 

Since L (.) is a polynomial and G is a deterministic polynomial time algorithm, such 

that any input s ∈ {0,1} n, and the algorithm G will output a chain of length L (n). G will 

be a pseudo-random generator provided that it follows the following two conditions: 

1) (Expansion) For each n, L (n)> n; 

2) (Pseudo-randomness) For all the probabilistic polynomial time differentiators D, 

there is a negligible negl function such that: 
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where r is chosen uniformly at random from {0,1} L (n), the seed is chosen uniformly at 

random from {0,1} n, and the probabilities are taken on the random currencies used by 

D and the choice of r and s. The function L (.) is called the expansion factor of G. 

(KATZ, J; LINDELL, Y, 2008). 

  

2.3. Pseudo-random generators 

There are several random computational generators, which generate numbers in a 

pseudo-random chain. Among them, the congruent generator and the Fibonacci 

sequence, which are two bad generators and are used in composition to the digital root 

for the creation of a generator better than the originals, are approached in this work. 

The first one, the congruent generator (cong ()), is a generator that uses the multiplier: x 

(n) = 69069x (n-1) + 1234567, initially x = 123456789. The generator has period 232. 

When the sequence is created, the final half of it is usually very regular, which leads to 

being a bad generator. 

The other generator uses the classical Fibonacci sequence (fib ()), where x (n) = x (n-1) 

+ x (n-2), with modulo 232. Its period is 3 * 231 if one of the two seeds are odd and not 1 

mod 8. As a pseudorandom generator, it is not very functional, but provides a simple 

and fast function to be used in other generators. 

 

3. Methodology 

For the development of the algorithm, we used the C programming language, which is 

easy to use and understand. In addition, the program used for programming the 

algorithm is the Code :: Blocks, open source IDE that is mainly focused on C, C ++ and 

Fortran. 

In the proposed model, the digital roots of random values obtained using the rand 

function of language C are determined. Then a simple frequency test is performed to 

verify that the determined values occur at the same frequency, with a very small 

percentage variation, and can proceed with the methodology if this variation is less than 

0.1%. 

Subsequently digital roots are transformed into 3-bit values, and for each value other 

than digital root, a value in the range of 1 byte is related. Thus, the value 1 of the digital 

root is bit 0 of the 8 bits of 1 byte, with 2 being bit 1, value 3 is bit 2 and so on, being 8 

bit 7. In this case, it is necessary to ignore the value 9 of the digital root, because it does 

not fit in the byte and is one of the limits of digital root, besides being a null variable. 

Then one can say that the value 1 of the digital root is 000, the value 2 is 001, ..., and 8 

is 111. Finally these values are summed 11 times in a single variable forming a random 

value of 33 bits, with the last bit being ignored, which leads to a value of 32 bits. 

The values must be 32 bits, since the tests used, provided by the Center for Information 

Security & Cryptography (CISC) of the University of Honk Kong (HKU) (TSANG, W; 

2002a), require this format. The tests used are: GCD, Birthday Spacings, Maurer, 

Collision, Frequency and Gorilla. 
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From the results of the tests, the evaluation of the use of digital root to improve random 

number generators considered bad is carried out. The tests are detailed below. 

3.1. GCD test 

The GCD (Greatest common divisor) is the maximum common divisor test. It is used to 

analyze the dependency and optimization of computational loops. The test is based on 

verifying the dependence of 2 random numbers using the Euclid algorithm, also 

checking the number of steps. The test result is the general value p. This value, for a 

positive result, must be less than 1, and greater than 0 for the generator to pass the test. 

(MARSAGLIA, G., 2002) 

3.2. Birthday Spacings test 

Birthday Spacings é um teste baseado no paradoxo do aniversário, da teoria das 

probabilidades. Os aniversários são escolhidos aleatoriamente de um ano e então são 

ordenados. Os espaçamentos entre os aniversários são gravados, checando a distribuição 

desses espaçamentos com um valor geral p. Esse valor, assim como o GCD, deve ser 

menor que 1 e maior que 0 para o gerador passar no teste (MARSAGLIA, G., 2002). 

3.3. Maurer test 

Maurer's universal test focuses on the number of bits between corresponding patterns (a 

measure related to the length of a compressed sequence). The purpose of the test is to 

detect whether or not the sequence can be significantly compressed without loss of 

information. If it is significantly compressible it can not be considered random. The 

result, p, must be greater than 0 and less than 1 for the generator to pass the test 

(TSANG, W; 2002e). 

3.4. Collision test 

The collision test is a statistical test that simulates balls being played in urns at random. 

The number of polls m is a power of 2, while the number of poles is n. The target of a 

ball must be determined by log2m bits produced by the random number generator to be 

tested. When a ball falls into an urn that is already occupied, a collision occurs. The test 

counts the number of collisions c. The generator fails the test if the number c is outside 

the predefined range. The result, p, must be greater than 0 and less than 1 for the 

generator to pass the test (TSANG, W, HUI, L., CHOW, K; CHONG, C., 1999) 

(TSANG, W; 2002b). 

3.5. Frequency test 

The frequency test focuses on the ratio of zeros and ones to a complete sequence. Its 

purpose is to determine whether the number of zeros and ones in a sequence is 

approximately the same as would be expected from a truly random sequence. The test 

evaluates the proximity of the fraction of ones to ½, that is, the number of ones and 

zeros in sequence should be approximately the same. There is no evidence to indicate 

that the sequence tested is non-random. The resulting p value must not be equal to or 

greater than 1 or less than or equal to 0 for the generator to have a positive test result 

(TSANG, W; 2002c). 

3.5. Gorilla test 

The Gorilla test is based on the infinite monkey theorem, where a monkey typing 

randomly on a keyboard for an infinite amount of time will surely create any text. So for 

32-bit integers produced by the generator, one of the 32-bit possible positions is 

specified, with the bit numbered from 0 to 31 from least to most significant. A 226+25 
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sequence of these bits is obtained, consisting of the designated bit of each of the 226+25 

integers of the generator. If x is the number of 26-bit words that do not appear in the 

sequence, then x must be approximately normally distributed with the mean 24687971 

and standard deviation 4170, so that f((x-24687971)/4170) must be normally distributed 

in [0,1], where f() is the standard normal distribution function. The value of p must 

beless than 1 and greater than 0 for the result to be positive for the generator. (TSANG, 

W; 2002d). 

 

5. Results and discussion 

Initially, the code of transformation of random numbers obtained from the rand () 

function was done for their respective digital roots. The developed code is shown in 

Table 1. 

Table 1 - Code to obtain the digital root of a number 

 

The code in Table 1 has, in addition to the initial while, two more whiles for the two 

possible iterations required to obtain a single digit of the random value, being a 

maximum value of 999999999. Based on the obtained values, it is now necessary to test 

if they have a frequency of values that is approximately the same, with a minimum 

percentage change. Thus, using a simple code to visualize the frequency, the results are 

presented in Table 2. 

Table 2 - Results of frequency of values obtained from digital root 
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According to Table 2, each value next to the numbers 1 through 9 represents the number 

of times this number appeared in the random number sequence. Thus, knowing that the 

total number was 10000000 (10 million), all values correspond to approximately 11%, 

which leads to an equal frequency for all values, demonstrating a positive result. 

The next step is to transform the obtained digital roots into 3-bit values, ignoring 9, 

according to the code shown in Table 3. 

Table 3 - Digital roots transformation code for 3-bit values 

 

To obtain a 32-bit sequence, it is necessary to repeat the routine of obtaining 3 bits of 

digital roots 11 times, ignoring the last bit in the last iteration. These bits are then 

summed and transformed into a possibly random value, which will be input from 

functions that will test whether the generator actually generates random numbers. 

Then the GCD, Birthday Spacings, Maurer, Collision, Frequency and Gorilla tests are 

applied to the data obtained from the function shown in Table 3. The test results are 

presented in Tables 4 and 5. 

Table 4 - Results of the Maurer, Frequency, GCD and Birthday Spacings tests for the 32-bit sequence 
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Table 5 - Gorilla and Collision tests for the 32-bit sequence 
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As can be seen in Tables 4 and 5, the values obtained using digital root pass in all tests, 

having a worse result in Birthday Spacings. The best results were obtained in the 

Frequency and Gorilla tests, the first differing from the initial frequency test because it 

uses the chi-square and zeros and ones for their calculations, and the second one being 

known since many generators do not pass this test. 

Then it was tested if the values obtained from digital root improve bad random number 

generators, in this case cong () and fib (), previously defined. The results for cong () are 

presented in Tables 6 and 7, and for fib () in Tables 8 and 9. 

Table 6 - Results of the Maurer and Frequency tests for the cong () generator

 

 

 

 

 

 

 

 

 

Table 7 - Results of the GCD, Birthday Spacings, Gorilla and Collision tests for the cong() generator 
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Table 8 - Results of the Maurer, Frequency, GCD, Birthday Spacings and Gorilla tests for the fib () 
generator 
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Table 9 - Collision test for the fib () generator 
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It is observed that the generator cong () only passes in the tests Frequency and Maurer, 

the latter being the easiest to have a positive result, being that the generator fib () only 

passes this test. This demonstrates that these generators are bad enough not to pass these 

tests, different from the generator developed by digital root, which passes in all. Next, 

the results of the cong () and fib () tests are presented from the algorithm that uses the 

digital root transformed into 3 bits, in Tables 10, 11, 12 and 13. 

Table 10 - Results of the Maurer, Frequency and GCD tests for the modified cong () generator
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Table 11 -Results of the Birthday Spacings, Gorilla and Collision tests for the modified cong () generator

 

 

 
 

Table 12 - Results of the Maurer and Frequency tests for the modified fib () generator 

 

 

Table 13 - Results of the GCD, Birthday Spacings, Gorilla and Collision tests for the modified fib () 

generator 
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The results obtained demonstrate the viability of the digital root for random number 

generation, even if the speed has not been evaluated in this case. 

6. Final considerations 

The results obtained in the tests for generators of random sequences were satisfactory 

for the method developed from digital root. However, it is important to note that speed 

tests have not been performed, which can be done in future work. 
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Collision and Gorilla tests, which take longer to run completely, ranging from 3 minutes 

to 5 hours in total, are the most complex tests and are the most difficult to apply. The 

algorithm developed based on the digital root was able to pass in these tests, which 

demonstrates an excellent performance, compared to the weak generators, fib () and 

cong (), that were improved by the use of the digital root algorithm with 32 bits 

developed. 

Finally, it is important to note that the tests used do not prove the total usability of the 

digital root, since a number of its limits were removed (9), which results in a subset of 

the digital root, ranging from 1 to 8. In addition, this test battery does not prove 

usability in cryptography, for example, it needs its own generators with more restricted 

dependencies than those included here. 
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