
Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 1

EVALUATION OF JXTA AND JAVA FOR DEVELOPING

MESSAGE PASSING PARALLEL PROGRAMS

Márcio Augusto de Souza
1
, Luciano José Senger

1
, Arion de Campos Junior

1

Marcelo Ferrasa
1

1
 Universidade Estadual de Ponta Grossa – UEPG

msouza@uepg.br, ljsenger@uepg.br, arion@uepg.br, mferrasa@uepg.br

Abstract: This paper presents a study of the use Java and JXTA for developing

message passing parallel applications. This work is divided in two parts: a comparison

of a parallel application developed in C (Open MPI) and Java (MPJ Express); a

performance comparison among the message passing routines provided by JXTA,

parallel communication libraries and the native sockets of Java and C. The results show

that Java is a viable alternative to the development of parallel applications, both in terms

of execution time and in terms of communication. However, JXTA has a very large

communication overhead and it is not recommended in situations where much

communication occurs.

Keywords: Parallel computing; Message passing; MPI; Java; JXTA; Evaluation

1. INTRODUCTION

Computer clusters can be used in a wide variety of applications in commercial and

academics environments. Currently, an approach widely used is the use of clusters for

executing parallel applications, enabling institutions that do not have a parallel

computer to build and run applications that require great computational power

(DANTAS, 2005).

Executing a parallel application involves dividing it into smaller parts that can

be processed independently on different processors. When a parallel application is

executed in a cluster, it is very common to use the message passing programming

model, in which the different processes that belong to the application synchronize and

communicate by exchanging messages (DONGARRA et al, 2003; FOSTER, 1995;

FOX, 2003).

Message passing communication libraries are generally based on MPI (Message

Passing Interface), which is a standard that was defined by a consortium of research

institutes of universities and industries. MPI defines a set of routines that a message

passing library should have, and some parallel programming software studied in this

paper follow the MPI standard (MPI FORUM, 2012; QUINN, 2008).

Computer clusters can be organized in various ways, and one approach that has

been used recently is peer-to-peer (P2P), which defines a system that consists of

independent computers (peers) that share resources without the need for a central server.

The P2P model provides an efficient use of resources, with great flexibility for growing

in scale and self-organization (AMORETTI, 2006; MILOJICIC et al, 2002; VU et al,

2010).

The High Performance Computing research group of State University of Ponta

Grossa proposed a framework called P2Pcomp, which allows the development and

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 2

execution of parallel programs on clusters (or grids) using the P2P model (SENGER et

al, 2010).

This framework was developed with Java language and the JXTA platform,

which provides an infrastructure for creating P2P systems. With P2Pcomp it is possible

to develop parallel programs that use the message passing paradigm through a API that

provides simple communication routines implemented over the routines of

communication available in JXTA (HALEPOVIC e DETERS, 2005; VERSTRYNGE,

2010).

To analyze the performance of a parallel program that executes over a

framework like P2PComp, it is necessary to understand the overhead caused by the use

of Java and JXTA for programming parallel programs. Generally, parallel software

libraries are implemented using C or Fortran, which are languages that does not depend

on the execution of a virtual machine for interpreting programs (DEITEL e DEITEL,

2012; KAMINSKY, 2009). In addition, the performance of parallel programs depends

on the performance of the communication routines, and it is important to analyze the

adequacy of Java and JXTA for implementing communication routines.

In this context, this paper presents a performance analysis divided in two parts.

Initially, it is studied the performance of Java for the implementation of sequential and

parallel applications. Next, it is presented a comparative analysis of the performance of

various communication routines implemented in C and Java, such as: TCP and UDP

sockets; routines offered by parallel programming software organized according the

MPI model (Open MPI and MPJ Express); routines offered by JXTA.

This article is organized as follows: section 2 provides a discussion of related

work. Section 3 discusses the software and communication routines studied in this

work. Section 4 presents the results of the performance evaluation of Java parallel

program and communication routines, compared to their counterpart in C. Finally, in

Section 5 the conclusions obtained in this work are presented.

2. RELATED WORK

The use of Java for parallel computing has been explored in several works that propose

software that can run parallel applications and exchange messages with Java, such as

(BAKER et al, 2006a; BORNEMANN et al, 2005; NIEUWPOORT et al, 2005).

Besides that, efficient forms of communication between Java processes have been

proposed in (AAMIR E JAWAD, 2009; BAKER et al, 2006b; GROPP e THAKUR,

2005; TABOADA et al, , 2012).

The use of P2P systems for executing parallel and distributed applications has

been explored in (THERMING e BENGTSSON, 2005; VERBEKE et al, 2002). When

JXTA is studied, there are woks that analyze the performance of JXTA as a whole, as

(DAI et al, 2006; HALEPOVIC e DETERS, 2005), or specifically the performance of

its communication routines, as (ANTONIU et al, 2005; ANTONIU et al, 2008).

This paper, unlike the related works cited in this section, presents a comparative

evaluation of Java and C used for parallel programming, and a performance analysis of

communication routines of JXTA when compared to widely used C and Java message

passing parallel software. It is important to note that efficient communication is very

important for the development of applications that exchange messages frequently.

The next section describes all software studied in this work and the

communication routines offered by them.

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 3

3. MATERIALS AND METHODS

This section presents a discussion of the languages C and Java (subsection 3.1), from

which all software analyzed in this work were derived. Subsection 3.2 discusses the

message passing programming libraries used in the experiments, and subsection 3.3

presents the JXTA platform.

Java and C Languages

Java and C use two different models for making executable code: C compilers generate

native machine code that is executed directly by the CPU and Java compilers generates

bytecode that need to be interpreted by a virtual machine (called JVM – Java Virtual

Machine).

Both C and Java provide sockets as the basic communication primitive. There

are two types of sockets: a reliable and ordered communication based on connecting the

two communication parts (TCP) and a connectionless package based communication

with no guarantee of delivery (UDP). For the latter, there are a limit of 600 kilobytes

per package (STEVENS e RAGO, 2005). Both forms of communication were analyzed

in this paper.

Message Passing Libraries

The message-passing paradigm defines a model of parallel programming that provides

high-level routines that allow parallel processes to communicate exchanging messages.

There is a standard created by universities and industries, called MPI, which defines a

set of routines that message-passing parallel programming libraries must offer.

MPI defines different variants of send and receive routines, but in this work it

was only considered standard routines, which must be implemented in an efficient way

according the MPI standard.

The MPI standard was initially created to be used with C and Fortran languages,

but it was adapted for Java in a standard called MPJ (Message Passing Java). In this

work, it was considered the following implementations of MPI and MPJ:

Open MPI: Open MPI is an open-source implementation of MPI that was

developed by a consortium of companies, universities and research institutions. The

Open MPI was based on three implementations of MPI: FT-MPI, LA-MPI and LAM

(GRAHAM et al, 2005; HURSEY et al, 2009).

MPJ Express: The MPJ Express implements the MPI standard in Java and uses

the Java NIO library as the communication basis. The Java NIO was created to provide

high performance I/O routines (AAMIR e JAWAD, 2009; BAKER et al, 2006).

JXTA Programming

The P2P computing model defines the organization of distributed systems as a set of

cooperating computers, called peers, which share their resources without requiring a

central server. Files, disk storage and processor cycles are examples of resources that

can be shared in a P2P system. There is an open-source specification, created by Sun

Microsystems, which defines routines for creating, maintaining and exchanging

messages in P2P networks, called JXTA.

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 4

From the JXTA specification it was defined the JXSE library, which is a Java

implementation of the routines defined in JXTA. JXSE was used in the experiments

performed in this work.

JXTA defines a basic type of communication called pipe, which is a channel that

carry data flows. A pipe can optionally perform reliable communication, and this option

can be configured at the time the pipe is created. Messages sent by a pipe can have a

maximum size of 600 kilobytes.

When a message is received in a pipe, an event is generated, and the process

being executed is interrupted so that the message can be received and processed. The

process of event-driven message reception does not follow the model of point-to-point

communication defined by sockets or by the messaging libraries defined earlier, in

which there is a receiving routine that blocks the process until the message is received.

The JXTA socket, implemented over pipes, defines sending and receiving

routines, and has no limitation to the size of a message. Both models of communication

were analyzed in this work, using reliable and not reliable forms of communication

(VERSTRYNGE, 2010).

4. RESULTS AND DISCUSSION

Analysis of Java and C parallelism

As it was explained in the previous section, a compiled C program is transformed into

machine code and executed directly by the CPU. A Java program, on the other hand, is

compiled to an intermediate code called bytecode, which is executed by a virtual

machine. The JVM is important to ensure the portability of programs written in Java,

but it can negatively affect the performance of a program (DEITEL e DEITEL, 2012;

KAMINSKY, 2009).

To evaluate the performance difference between parallel applications developed

in Java and C, it was developed a sequential and a parallel program for matrix

multiplication using both languages. The parallel versions were developed with Open

MPI 1.6 and MPJ Express 0.38

The tests were executed on two computers with AMD Athlon64 5200+ CPU

with 2,7 gigahertz of clock and 2 gigabytes of memory. The software versions used are:

 Linux with kernel version 2.6.33;

 JVM 1.7;

 Compiler g++ 4.4.4.

Table 1 shows the results of the execution of the sequential versions in three

scenarios:

 Compiled with g++ without optimization;

 Compiled with g++ using the compile option "O3", which generates

optimized machine code;

 Compiled with Java

The results obtained in these tests show that, independently of the existence of a

JVM, the runtimes of C and Java versions are very similar. In addition, if the standard C

compilation is used, the Java program is 64% faster, which shows that Java compiler

generate efficient bytecode.

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 5

Table 1. Runtime of the sequential matrix multiplication program using C and Java compilers

Compiler Runtime in seconds

g++ standard compile 198,89 s

g++ optimized compile 129,09 s

Java 127,30 s

Tables 2 and 3 show the results obtained by the execution of the parallel

versions of the matrix multiplication algorithm divided in two processes, using two

computers or two cores of the same computer.

Table 2. Runtime of parallel implementation of matrix multiplication using Open MPI and MPJ

Express on two computers

Software Runtime in seconds

Open MPI 67,78 s

MPJ Express 68,09 s

Table 3. Runtime of parallel implementation of matrix multiplication using Open MPI and MPJ

Express on two cores

Software Runtime in seconds

Open MPI 64,52 s

MPJ Express 64,37 s

It can be noted that both versions offer similar runtimes. This application does

not have a large communication overhead, which can be perceived by the small

difference of runtimes obtained on cores and on different computers. These results show

that Java is a good solution for the development of parallel applications, and the virtual

machine does not affect the performance of a parallel application.

In the next subsection, it is presented an evaluation of the communication

routines of Java, C and JXTA.

Communication routines performance evaluation

The performance evaluation of communication routines was performed by calculating

the round-trip time of a message exchanged between two computers. This metric is

measured by the execution of a benchmark called ping-pong, which calculates the time

expended for a message to reach his destination and return to the original sender.

The benchmark transmits messages that carry byte data types and it was

implemented in Java and C. The following sizes of message were considered:

 Small: 2, 200, 400, 600, 800 e 1,000 bytes

 Medium: 20,000, 40,000, 60,000, 80,000 e 100,000 bytes

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 6

 Large: 200,000, 400,000, 600,000, 800,000 e 1,000,000 bytes

The experiments were conducted on two computers with Intel Core i7 processor

with 3.4 gigahertz of clock and 4 gigabytes of memory. The computers are connected to

a gigabit Ethernet network. The software versions used are:

 Linux with kernel version 2.6.37;

 Compiler g++ 4.5.2;

 JVM 1.7;

 Open MPI 1.6;

 MPJ Express 0.38;

 JXSE 2.5 and 2.6.

All graphics shown in this subsection show in the x-axis the message size in

bytes, and in the y-axis the communication time in milliseconds.

Figure 1. Transmission time for small messages, not including JXTA.

Figure 1 shows the communication time for small messages for all software

analyzed, except for JXTA. The figure shows that, with minor variations, all

communication routines have a similar performance. The exception is MPJ Express

software, which has a considerably larger transmission time.

Figure 2. Transmission time for small messages of JXTA version 2.5, including reliable modes.

0

100

200

300

400

500

600

700

800

900

2 200 400 600 800 1000

Ti
m

e
 (

m
s)

Size (bytes)

Transmission Time - Small Messages

Socket TCP

Socket UDP

Open Mpi

Java TCP

Java UDP

MPJ Express

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 7

The evaluation of small JXTA messages was performed in three parts: the

influence of using a reliable communication; the difference between versions 2.5 and

2.6; comparison of JXTA with all the other communication routines.

As discussed in subsection 3.3, JXTA presents reliable versions of

communication routines, and figure 2 shows the performance of JXTA pipes and

sockets of the two kinds.

Figure 2 shows that, for pipes, being reliable does not influence the performance.

On the other hand, for a socket, there is a performance improvement when it is not used

a reliable version. One characteristics of the two versions of JXTA analyzed is that the

transmission time lowers as the size of the message increases, showing that it is

preferable to use messages of larger sizes.

Figure 3 shows the communication time for unreliable communication routines

for versions 2.5 and 2.6. The version 2.6 presented a great problem of variation in the

measured communication times, and it was not possible to evaluate the performance of

communication for message sizes lesser than 600 bytes. Figure 3 also shows that

version 2.6 has poor performance compared to version 2.5.

For JXTA, it was considered only unreliable routines of version 2.5 for the

comparison with other communication routines, as they presented the best performance

among all JXTA variants. Version 2.6 will no longer be addressed in this paper since

the use of this version of JXTA is not recommended because of performance issues and

high instability.

Figure 3. Transmission time for small messages of JXTA versions 2.5 and 2.6.

0

500

1000

1500

2000

2500

3000

3500

4000

2 200 400 600 800 1000

Ti
m

e
 (

m
s)

Size (bytes)

Transmission Time - Small Messages

Not reliable Pipe

Reliable Pipe

Not reliable Socket

Reliable Socket

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 8

The Figure 4 shows a comparison among the transmission time of JXTA

routines compared to communication routines available in C and Java, and it is possible

to note that the performance of communication routines of JXTA is inferior to the

others. For example, for a size of 200 bytes, a message sent using a Java socket takes

439 milliseconds, while a JXTA pipe transfers the same message in 1677 milliseconds.

Figure 4. Transmission time for small messages of all communication routines.

This problem not occurs because of Java, as proved in Table 1, which shows that

there is no considerable difference in performance between Java and C. The poor

performance of the communication libraries of JXTA is derived from the structure of

the software. This conclusion can also be reached for MPJ Express, which did not

presented good performance.

0

500

1000

1500

2000

2500

3000

3500

4000

600 800 1000

Ti
m

e
 (

m
s)

Size (bytes)

Transmission Time - Small Messages

Pipe 2.5

Socket 2.5

Pipe 2.6

Socket 2.6

0

500

1000

1500

2000

2500

3000

2 200 400 600 800 1000

Ti
m

e
 (

m
s)

Size (bytes)

Transmission Time - Small Messages

Socket TCP

Socket UDP

Open Mpi

Java TCP

Java UDP

MPJ Express

JXTA Pipe 2.5

JXTA Socket 2.5

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 9

The Figure 5 shows performance values for medium-sized messages, and it can

be noted that the performance difference between communication with JXTA and the

other routines is lesser, but it is still significant. For a message of 600 kilobytes, the

maximum size that can be transmitted in a JXTA pipe, there is a difference of 165% to a

Java socket.

Figure 5. Transmission time for medium messages of all communication routines.

The communication routines have similar performance only when large

messages, ranging from 200 megabytes to 1 gigabyte, are transmitted, as it can be seen

in Figure 6.

Figure 6. Transmission time for large messages of all communication routines.

The results presented in this section show that JXTA have low performance

communication routines, which in some cases can influence the overall performance of

a parallel application.

0

500

1000

1500

2000

2500

3000

3500

4000

20000 40000 60000 80000 100000

Ti
m

e
 (

m
s)

Size (bytes)

Transmission Time - Medium Messages

Socket TCP

Socket UDP

Open Mpi

Java TCP

Java UDP

MPJ Express

JXTA Pipe 2.5

JXTA Socket 2.5

0

5000

10000

15000

20000

25000

200000 400000 600000 800000 1000000

Ti
m

e
 (

m
s)

Size (bytes)

Transmission Time - Large Messages

Socket TCP

Open Mpi

Java TCP

MPJ Express

JXTA Socket 2.5

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 10

6. CONCLUSION

The use of Java is a viable and attractive alternative for parallel computing, as the

satisfactory results obtained from the experiments performed in this paper show. In

addition, MPJ Express is a good option for implementing parallel Java applications, but

in this particular case, it is recommended to use larger messages when the application is

network-bound.

Regarding the performance of communication routines, the libraries studied in

this work provided good performance, even when compared to sockets that are natively

offered by programming languages. In this context, it was not noticed significant

differences between Java and C for UDP and TCP, confirming that there is no

difference between the two languages regarding communication performance.

JXTA 2.5, on the other hand, showed poor performance for exchanging small

and medium messages. Version 2.6 was even worst in terms of performance and

stability. Therefore, this work do not recommend the use of version 2.6 of JXTA.

The use of JXTA for developing parallel applications depend on the quantity of

communication made by the application. However, it is important to remember that the

use of P2P technology brings many advantages, so its cost / benefit must be always

considered.

REFERENCES

AAMIR, S.; JAWAD, M. Towards Efficient Shared Memory Communications in

MPJ Express. Java Workshop at the 23rd IEEE International Parallel and Distributed

Processing Symposium, may, 2009.

AMORETTI, M. Peer-to-peer based grid architectures. PhD thesis, Universita Degli

Studi Di Parma, january, 2006.

ANTONIU, G.; JAN, M.; NOBLET, D. A practical example of convergence of P2P

and grid computing: An evaluation of JXTA’s communication performance on

grid networking infrastructures. IEEE International Symposium on Parallel and

Distributed Processing, april, 2008.

ANTONIU, G.; HATCHER, P.; JAN, M.; NOBLET, D.A. Performance evaluation of

JXTA communication layers. IEEE International Symposium on Cluster Computing

and the Grid, may, 2005.

BAKER, M.; CARPENTER, B.; SHAFI, A. MPJ Express: Towards Thread Safe

Java HPC. IEEE International Conference on Cluster Computing, september, 2006a.

BAKER, M.; CARPENTER, B.; SHAFI, A. An Approach to Buffer Management in

Java HPC Messaging. Lecture Notes in Computer Science, vol. 3992, 2006b.

BORNEMANN, M.; NIEUWPOORT, R.; KIELMANN, T. MPJ/Ibis: a flexible and

efficient message passing platform for Java. Proceedings of 12th European

PVM/MPI Users' Group Meeting, p. 217-224, 2005.

DAI, Z.; FANG, Z.; HAN, X.; XU, F.; YANG, H. Performance Evaluation of JXTA

Based P2P Distributed Computing System. 15th International Conference on

Computing, november, 2006.

http://link.springer.com/search?facet-author=%22Mark+Baker%22
http://link.springer.com/search?facet-author=%22Bryan+Carpenter%22
http://link.springer.com/bookseries/558

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 11

DANTAS, M. Computação distribuída de alto desempenho: Redes, clusters e grids

computacionais. Axcel books, 2005.

DEITEL, H; DEITEL, P. Java - How to Program. 9th ed., Prentice Hall, 2012.

DONGARRA, J.; FOSTER, I.; FOX, G.; GROPP, W.; KENNEDY, K.; TORCZON, L.;

WHITE, A. The Sourcebook of Parallel Computing. Morgan Kaufmann Publishers,

2003.

FOSTER, I. Designing and Building Parallel Programs: Concepts and tools for

Parallel Software Engineering. Addison Wesley Publishing Company, 1995.

FOX, J. Messaging Systems: Parallel Computing in the Internet and the Grid.

Lecture Notes in Computer Science, vol. 2840, 2003.

GRAHAM, R.; WOODALL, T.; SQUYRES, J. Open MPI: A Flexible High

Performance MPI. Proceedings of the 6th Annual International Conference on Parallel

Processing and Applied Mathematics, 2005.

GROPP, W.; THAKUR, R. An Evaluation of Implementation Options for MPI One-

Sided Communication. Proceedings of the 12th European PVM/MPI Users’ Group

Meeting (Euro PVM/MPI 2005), Recent Advances in Parallel Virtual Machine and

Message Passing Interface, Lecture Notes in Computer Science, vol. 3666, september,

2005.

HALEPOVIC, E.; DETERS, R. The JXTA performance model and evaluation.

Future Generation Computer Systems, vol. 21, issue 3, 2005.

HURSEY, J.; MATTOX, T.; LUMSDAINE, A. Interconnect Agnostic

Checkpoint/Restart in Open MPI. Proceedings of the 18th ACM international

symposium on High Performance Distributed Computing HPDC, p. 49-58. 2009.

KAMINSKY, A. Building Parallel Programs: SMPs, Clusters & Java (Computing).

Course Technology – Cengage Learning, 2009.

MILOJICIC, D.; KALOGERAKI, V.; LUKOSE, R.; NAGARAJA, K.; PRUYNE, J.;

RICHARD, B. Peer-to-peer computing. Technical Report HPL-2002-57, HP

Laboratories, march, 2002.

MPI FORUM. MPI: A Message-Passing Interface Standard: Version 3.0. High

Performance Computing Center Stuttgart, 2012.

NIEUWPOORT, R. V.; MAASSEN, J; WRZESINSKA, G.; HOFMAN, R.; JACOBS,

C., KIELMANN, T.; BAL, H. Ibis: a flexible and efficient Java based grid

programming environment. Concurrency and Computation: Practice and Experience,

17(7-8):1079-1107, june, 2005.

QUINN, M. Parallel Programming in C with Mpi and Openmp. McGraw-Hill

Education, 2008.

SENGER, L.; SOUZA, M.; FOLTRAN JR, D. Towards a peer-to-peer framework

for parallel and distributed computing. 22nd International Symposium on Computer

Architecture and High Performance Computing, 2010.

STEVENS, R. W.; RAGO, S. A. Advanced Programming in the UNIX®

Environment. 2
nd

 ed, Addison Wesley, 2005.

TABOADA, G.; TOURIÑO, J.; DOALLO, R. F-MPJ: scalable Java message-passing

communications on parallel systems. The Journal of Supercomputing, vol. 60, issue 1,

april, 2012.

http://link.springer.com/bookseries/558
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X/21/3
http://link.springer.com/search?facet-author=%22Guillermo+L.+Taboada%22
http://link.springer.com/search?facet-author=%22Juan+Touri%C3%B1o%22
http://link.springer.com/search?facet-author=%22Ram%C3%B3n+Doallo%22
http://link.springer.com/journal/11227
http://link.springer.com/journal/11227/60/1/page/1

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V. 3, N.2, Aug/2013 Page 12

THERNING, N.; BENGTSSON, L. Jalapeno: decentralized grid computing using

peer-to-peer technology. Proceedings of the 2nd conference on Computing frontiers,

2005.

VERBEKE, J.; NADGIR, N.; RUETSCH, G; SHARAPOV, I. Framework for peer-to-

peer distributed computing in a heterogeneous, decentralized environment.
Proceedings of the Third International Workshop on Grid Computing, 2002.

VERSTRYNGE, J. Practical JXTA II: Cracking the P2P puzzle. Lulu.com , 2010.

VU, Q.; LUPU, M.; OOI, B. Peer-to-Peer Computing: Principles and Applications.

Springer, 2010.

